1 research outputs found

    Understanding the impact of 3D stacked layouts on ILP

    Get PDF
    Journal Article3D die-stacked chips can alleviate the penalties imposed by long wires within micro-processor circuits. Many recent studies have attempted to partition each microprocessor structure across three dimensions to reduce their access times. In this paper, we implement each microprocessor structure on a single 2D die and leverage 3D to reduce the lengths of wires that communicate data between microprocessor structures within a single core. We begin with a criticality analysis of inter-structure wire delays and show that for most tra- ditional simple superscalar cores, 2D floorplans are already very efficient at minimizing critical wire delays. For an aggressive wire-constrained clustered superscalar architecture, an exploration of the design space reveals that 3D can yield higher benefit. However, this benefit may be negated by the higher power density and temperature entailed by 3D integration. Overall, we report a negative result and argue against leveraging 3D for higher ILP
    corecore